Exosomes

hUC-MSCs and derived exosomes attenuate DEX-induced muscle atrophy through modulation of estrogen signaling pathway.

Sarcopenia, a multifactorial syndrome characterized by progressive loss of skeletal muscle mass and strength, combined with impaired physical function, is associated primarily with aging but also driven by chronic inflammation, immobility, and endocrine dysregulation. It leads to increased risks of...

๐Ÿ—“๏ธ 2025-08-02
Read MorehUC-MSCs and derived exosomes attenuate DEX-induced muscle atrophy through modulation of estrogen signaling pathway.

Aptamer-Conjugated Exosomes Ameliorate Diabetes-Induced Muscle Atrophy by Enhancing SIRT1/FoxO1/3a-Mediated Mitochondrial Function.

Muscle atrophy is associated with Type 2 diabetes mellitus, which reduces the quality of life and lacks effective treatment strategies. Previously, it was determined that human umbilical cord mesenchymal stromal cell (hucMSC)-derived exosomes (EXOs) ameliorate diabetes-induced muscle atrophy. However, the...

๐Ÿ—“๏ธ 2025-02-01
๐Ÿ“ฐ Publication: Journal Of Cachexia Sarcopenia And Muscle
Read MoreAptamer-Conjugated Exosomes Ameliorate Diabetes-Induced Muscle Atrophy by Enhancing SIRT1/FoxO1/3a-Mediated Mitochondrial Function.

A fluorescent aptasensor for deoxynivalenol detection based on Nb.BbvCI-assisted targeted-responsive three-way junctions integrated DNA walking machine.

Deoxynivalenol (DON) contamination in cereals is a widespread issue with global implications, necessitating the development of efficient detection methods. Here, a fluorescent aptasensor integrating target-responsive DNA three-way junction (TWJ) and DNA walking machine was developed to detect DON. The DON-specific...

๐Ÿ—“๏ธ 2024-12-06
๐Ÿ“ฐ Publication: Food Chemistry
Read MoreA fluorescent aptasensor for deoxynivalenol detection based on Nb.BbvCI-assisted targeted-responsive three-way junctions integrated DNA walking machine.

Subscribe to the SCWD Newsletter

Stay Informed with the Latest Updates and Exclusive Insights!